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ABSTRACT 

 A comprehensive, analytical treatment is presented of the microelastic-plastic 

nonlinearities resulting from the interaction of a stress perturbation with dislocation 

substructures (veins and persistent slip bands) and cracks that evolve during high-cycle 

fatigue of wavy slip metals.  The nonlinear interaction is quantified by a material 

(acoustic) nonlinearity parameter β extracted from acoustic harmonic generation 

measurements.  The contribution to β from the substructures is obtained from the 

analysis of Cantrell [Cantrell, J. H., 2004, Proc. R. Soc. London A, 460, 757].  The 

contribution to β from cracks is obtained by applying the Paris law for crack 

propagation to the Nazarov-Sutin crack nonlinearity equation [Nazarov, V. E., and 

Sutin, A. M., 1997, J. Acoust. Soc. Am. 102, 3349].  The nonlinearity parameter 

resulting from the two contributions is predicted to increase monotonically by 

hundreds of percent during fatigue from the virgin state to fracture.  The increase in β 

during the first 80-90 percent of fatigue life is dominated by the evolution of 

dislocation substructures, while the last 10-20 percent is dominated by crack growth.  

The model is applied to the fatigue of aluminium alloy 2024-T4 in stress-controlled 
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loading at 276MPa for which experimental data are reported.  The agreement between 

theory and experiment is excellent.  

 

PACS numbers: 62.20.Mk; 61.72.Hh; 62.65.+k; 43.25.Ba 

 

1. INTRODUCTION 

Various techniques and methodologies have evolved over the last several 

decades that attempt to characterize nondestructively the state of metal fatigue.  While 

many of these techniques have proven useful, no method has been able to provide an 

unambiguous assessment of accumulated damage at a given level of fatigue over the 

entire range from the virgin state to fracture.  Cantrell (2004) has recently shown that 

self-organized substructural arrangements of dislocations formed in wavy slip metals 

during cyclic stress-induced fatigue produce substantial changes in the microelastic-

plastic nonlinearity of the material that can be quantified by a material nonlinearity 

parameter β experimentally determined from acoustic harmonic generation methods.  

The material (acoustic) nonlinearity parameter β for a given state of fatigue is highly 

dependent on the volume fractions of veins and persistent slip bands (PSBs), PSB 

internal stresses, dislocation loop lengths, dipole heights, and the densities of 

secondary dislocations in the substructures.   

Nazarov and Sutin (1997) have shown that the appearance of macrocracks in 

the material also produces large increases in β.  The Paris-Erdogan (1963) equation for 

crack propagation is applied in the present study to the Nazarov-Sutin (1997) crack 

nonlinearity equation to assess the change in β as a function of crack growth during 



 

 

 

3

the fatigue process.  The resulting expression is combined with the Cantrell (2004) 

substructural nonlinearity model to assess the value of β at each stage of the fatigue 

process from the virgin state to fracture.  The model is restricted to high cycle fatigue 

in metals with wavy dislocation slip and is applied to the calculations of β for fatigued 

polycrystalline nickel and for aluminium alloy 2024-T4 (AA2024-T4) as a function of 

percent total fatigue life from the virgin state to fracture.  The theoretical curve is 

compared to the experimental data of fatigued AA2024-T4 previously reported 

(Cantrell and Yost 2001).     

We begin in Section 2 with a discussion of relevant dislocation substructures 

that evolve during the fatigue of wavy slip metals.  In Section 3 the contribution to 

β via the Cantrell (2004) model resulting from such substructures is considered.  In 

Section 4 the Paris-Erdogan (1963) equation is applied to the Nazarov-Sutin (1997) 

crack nonlinearity equation to assess the effects of crack growth during fatigue on the 

value of β.   Theoretical β versus percent total fatigue life curves for polycrystalline 

nickel and AA2024-T4 calculated from the model are given in Section 5.  The results 

for AA2024-T4 are compared to the experimental measurements (Cantrell and Yost 

2001).      

 

2. SUBSTRUCTURAL EVOLUTION DURING METAL FATIGUE 

Cyclic stress-induced fatigue in metals may be divided into roughly five stages: 

(1) cyclic hardening/softening, (2) strain localization and microcrack nucleation, (3) 

propagation or coalescence of microcracks to form macrocracks, (4) macrocrack 

propagation, and (5) fracture.  Nonlinear acoustical experiments (Cantrell and Yost 
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1994, 2001, Na et al. 1996, Nazarov and Sutin 1997, and Frouin et al. 1999) indicate 

that each stage of the fatigue process may be characterized by a unique nonlinear 

relationship between an impressed stress perturbation (e.g., a sound wave) and a 

microelastic-plastic straining of the material.  The straining is quantified by an 

experimentally determined nonlinearity parameter β that increases monotonically by 

several hundred percent over the fatigue life.  In order to gain a proper understanding 

of the relationship between the value of the nonlinearity parameter and the state of 

fatigue, it is necessary to understand analytically the contribution to the nonlinearity 

parameter from each of the process stages.  We consider first the evolution of 

dislocation substructures during the fatigue process.  

During fatigue, the initial cycles of alternating stress generate dislocations that 

accumulate on the primary glide planes of the material in the form of mutually trapped 

primary dislocation dipoles.  Under an impressed shear stress, dislocations of opposite 

sign in the dipole glide in opposite directions on slip planes separated by a distance h 

called the dipole height.  In pure wavy slip metals the hardening/softening stage results 

in the growth of a so-called vein structure formed from the accumulation of dipoles 

generated from the cyclic stresses (Neumann 1983).  The process of mutual trapping 

and accumulation of dislocations continues until the vein structure is composed almost 

entirely of dislocation dipoles.  At stresses below the endurance limit both edge and 

screw dislocations are trapped in dipoles.  At the endurance limit, and above, only 

edge dislocations are left.  Screw dipoles are mostly annihilated by cross-slip.  The 

vein structure can occupy as much as 50 percent volume fraction of fatigued material 

at saturation. 
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Saturation of the vein structure occurs at a critical value of dislocation density 

that results in a substructural elastic instability (Kratochvil 2001). The instability 

marks the end of the hardening/softening stage and leads to the transformation of some 

of the vein structure to a more stable persistent slip band (PSB) structure (Kuhlman-

Wilsdorf and Laird 1980, Brown 1981).  The PSBs are characterized by a periodic 

array of parallel walls that form ladder-like patterns.  The parallel walls are composed 

primarily of dislocation dipoles with a density roughly twice that of the vein structure.  

The regions between the PSB walls are dislocation poor.  Because the vein structure is 

so hard, most of the plastic strain amplitude imposed during cyclic loading is 

developed in the PSBs at this stage of the fatigue process.   

Crack nucleation occurs primarily at the intersection of a PSB with a bounding 

surface that gives rise to a stress singularity (Brown 1981).  The density of 

microcracks nucleated during the first 20-40 percent of fatigue life is substantial, but 

the cracks do not contribute significantly to the material nonlinearity until the crack 

length reaches a critical value.  This critical value does not typically occur for high 

cycle fatigue of most metals until roughly 80 – 90 percent of the fatigue life is 

expended.  

 

3. MICROELASTIC-PLASTIC NONLINEARITY OF SUBSTRUCTURES 

We surmise from the above considerations that the dislocation motion in 

fatigued metals arises primarily from two basic dislocation configurations that serve as 

building blocks for the veins and PSBs formed during fatigue.  The first configuration 

is the dislocation dipole as we have discussed.  The second configuration is associated 
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with the fact that individual dislocations (monopoles) and even individual dislocations 

comprising a dipole are generally pinned by impurities or other dislocations in the 

material.  This results in a displacement (or bowing) of the dislocation between two 

pinning points under an impressed shear stress. A comprehensive derivation of the 

equations describing the material nonlinearity arising from the dislocation 

configurations and fatigue substructures formed from the configurations has been 

recently published by Cantrell (2004).  His derivation is based on the assumption of a 

generalized microelastic-plastic nonlinearity associated with each of the generated 

substructures using monopoles and dipoles as analytical building blocks.  We present 

here the salient features of the model.  

We begin by assuming that fatigued metals possess internal stresses resulting 

from cyclic loading and that a longitudinal stress perturbation (e.g., a sound wave) 

applied to the internally stressed material produces a total longitudinal strain ε 

composed of (1) an elastic strain contribution εe, (2) a plastic strain contribution εmp 

resulting from the bowing of pinned dislocation monopoles, and (3) a plastic strain 

contribution εdp resulting from the motion of dislocations comprising the dipoles.   For 

expediency, it is assumed that the polycrystalline metals considered here are quasi-

isotropic.  Hence, the total longitudinal strain in a given region of the solid is related to 

the elastic and two plastic strain components as 

 

                     ε = εe + εmp + εdp   .    (1) 
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3.1. Elastic nonlinearity 

 For elastic strains the relationship between an impressed longitudinal stress � 

and the longitudinal elastic strain εe is given as (Cantrell 2004) 

 

                    
  
σ = σ0 + A2

eεe +
1
2

A3
e εe( )2 +L = σ0 + A2

eεe −
1
2

A2
eβe εe( )2 +L  (2) 

 

where A2
e and A3

e are the second and third-order Huang elastic coefficients, 

respectively, σ0 is the initial stress, and  βe  is  the  material  elastic  nonlinearity  

parameter  defined  by 

        βe = −
A3

e

A2
e      .    (3) 

 

3.2. Nonlinearity from dislocation monopoles 

To obtain the contribution to microelastic-plastic nonlinearity from dislocation 

monopoles, we consider some density Λmp of isolated single dislocations (dislocation 

monopoles) in the material lying in arbitrary slip planes in grains of arbitrary 

orientation in a polycrystalline solid.  For a given dislocation a longitudinal stress σ 

applied to the solid produces a shear stress τ at the site of the dislocation of magnitude 

τ = Rσ  along its slip direction, where R is the Schmid or resolving factor.  If the 

dislocation is pinned at two points a distance 2L apart, the length of dislocation 

between the pinning points will bow out under the action of the resolved shear stress 

like an arched string.  The dislocation line tension is taken to be 0.5Gb2.  The 
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movement (bowing) of the dislocation produces a plastic shear strain γmp in the 

material.  The strain γmp is related to the longitudinal monopole plastic strain εmp as εmp 

= Ωγmp where Ω is the conversion factor from shear to longitudinal strain.  

The dislocation monopole stress-strain relationship is given by (Cantrell 2004) 

 

   
  
σ = σ0 + A2

mpεmp −
1
2

A2
mpβ mp εmp( )2 +L   (4) 

where 

       A2
mp =

3
2

G
ΩΛmpL2R

     (5) 

and    

            β mp =
24
5

ΩΛmpL4R3 A2
e( )2

G3b2 σ0  .  (6) 

 

In Eqs.(5) and (6) G is the shear elastic modulus, b is the amplitude of the Burgers 

vector, and |σ0| is the magnitude of the initial (residual or internal) longitudinal stress 

in the material.  

 

3.3. Nonlinearity from dislocation dipoles 

 The contribution from dislocation dipoles to the microelastic-plastic nonlinearity 

is obtained by noting that for edge dislocation pairs of opposite polarity the shear force 

per unit length Fx along the glide plane on a given dislocation due to the other 

dislocation in the pair is given by (Hull and Bacon 1984)   
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                Fx = −
Gb2

2π (1−ν )
x(x2 − y2)
(x2 + y2)2    .   (7) 

In Eq.(7) ν is Poisson's ratio, and (x,y) are the Cartesian coordinates of one dislocation 

in the pair relative to the coordinates (0,0) of the second.  As mentioned previously, 

the motion of the dislocations in the dipole pair occurs only along parallel slip 

directions separated by the dipole height h.  Using Eq.(7), Cantrell (2004) has shown 

that for a material having a density Λdp of dislocation dipoles, the dislocation dipole 

stress-plastic strain relationship is given as   

 

       
  
σ = σ0 + A2

dpε dp −
1
2

A2
dpβ dp(ε dp)2 +L   (8) 

where              

            A2
dp = ( G

4πΩRΛdph2(1−ν )
)  ,        (9) 

and   

         β dp =
16π 2ΩR2Λdph3(1−ν)2(A2

e )2

G2b
 .  (10) 

 

3.4. Effective microelastic-plastic nonlinearity parameter 

  Each of the stress-strain relationships [Eqs.(2), (4) and (8)] can be solved for 

the strain in terms of the stress to second order in the stress.  Adding the strains 

together to obtain the total strain ε as given by Eq.(1) and solving the resulting 

expression for the stress in terms of the total strain lead to the relationship for the 

effective nonlinearity parameter for the fatigued material given by (Cantrell 2004) 
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          β =
βe + β mp + β dp

1+ Γmp + Γdp( )2
    (11) 

where the gamma factors 

        Γmp =
2
3

ΩΛmpL2R
G

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ A2

e     (12) 

and 

                Γdp =
4πA2

eΩRΛdph2 1−ν( )
G

 .   (13) 

    

3.5. Substructural contributions to the nonlinearity parameter of wavy slip metals 

Eq.(11) is obtained under the assumption that the dislocation monopoles and 

dipoles are distributed uniformly throughout the material.  Generally, the monopoles 

and dipoles are not distributed uniformly but are located within the discrete 

substructures generated in the material during fatigue.  We denote the total volume 

fraction of substructure containing monopoles by fmp and the total volume fraction of 

substructure containing dipoles by fdp.  We assume that the values of the monopole and 

dipole nonlinearity parameters, βmp and βdp, and gamma factors, Γmp and Γdp, are 

constant within the fatigue-generated substructures. The change in the material 

nonlinearity parameter due to fatigue-generated substructures is obtained by summing 

the individual contributions from dislocation monopole and dislocation dipole sources 

weighted by the volume fractions of material making such contributions.  Thus, the 

total nonlinearity parameter is more appropriately given as 
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              β =
βe + f mpβ mp + f dpβ dp

1+ f mpΓmp + f dpΓdp( )2
  .   (14) 

 

The dislocation dipole contribution has a possible vein structure source and a 

possible PSB source depending on the state of fatigue.  We thus write 

f dpβdp = fveinβvein
dp + fPSBwβPSBw

dp  and f dpΓdp = fveinΓvein
dp + fPSBwΓPSBw

dp where fvein and fPSBw, 

respectively, are the volume fractions of material at a given percent full life containing 

vein structure and PSB wall structure.  We assume fPSBw = (1/8)fPSB where fPSB is 

the volume fraction of PSBs in the material and the factor (1/8) is an estimate of the 

fraction of material in the PSB containing wall structure (Winter 1974, Antonopoulos 

and Winter 1976, Antonopoulos, Brown and Winter 1976).  The dislocation monopole 

contribution has a vein structure source and a PSB structure source resulting from the 

generation of secondary dislocations.  It is important to note that PSBs with secondary 

dislocations are old ones – not freshly initiated. Hence, we write 

f mpβmp = fveinβvein
mp +fPSBσβPSBσ

mp and f mpΓmp = fveinΓvein
mp +fPSBσ ΓPSBσ

mp where fPSBσ  is the 

volume fraction of material within the PSBs that contains sufficiently large secondary 

dislocation densities to significantly influence β via the PSB internal stress field.  A 

crude estimate of fPSBσ ≈ 0.15fPSB may be obtained from transmission electron 

micrographs of secondary dislocation structures in PSBs (Wang and Mughrabi 1984, 

Wang et al. 1984).  Substituting these equations into Eq.(14) yields 
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   β =
βe + fvein βvein

mp + βvein
dp( )+ fPSB 0.15βPSBσ

mp + 0.125βPSBw
dp( )

1+ fvein Γvein
mp + Γvein

dp( )+ fPSB 0.15ΓPSBσ
mp + 0.125ΓPSBw

dp( )[ ]2
 . (15) 

 

4. EFFECTS OF FATIGUE CRACKS ON NONLINEARITY PARAMETER 

The nucleation of cracks in the interior of pure polycrystalline metals is 

generally confined to the intersection of PSBs with bounding surfaces, such as 

appropriately-angled grain boundaries or (incoherent) inclusions, that can provide the 

appropriate conditions necessary to engender a stress singularity at the intersection 

(Brown 1981).  Nazarov and Sutin (1997) derived an expression for the contribution to 

the nonlinearity parameter of non-interacting penny-shaped cracks in bulk material.  

Using their suggested values of crack-related constants, we write their results in terms 

of the present notation as 

               βcrk ≈
5.3x106CcrkRcrk

4

1+ 0.25CcrkRcrk
3( )2

           (16) 

where Ccrk is the concentration of cracks in the interior of the material and Rcrk is the 

radius of the crack.  

 In order to obtain the crack contribution to the total nonlinearity parameter as a 

function of crack growth during the fatigue process we employ the Paris-Erdogan 

(1963) equation to assess the variation in the crack radius Rcrk as a function of percent 

fatigue life to fracture.  The Paris-Erdogan (1963) equation is given as 

 

              dRcrk
dN

= A ΔK( )n     (17) 
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where N is the number of fatigue cycles, ∆K is the stress-intensity range, and A and n 

are material-dependent constants.  The stress-intensity range is related to Rcrk as 

(Hertzberg 1989) 

 

               ΔK = BΔσ Rcrk       (18) 

 

where ∆σ = σmax – σmin is the difference between the maximum and minimum cyclic 

loading stresses and B is a factor that depends on the geometry of the crack.  We 

substitute Eq.(18) into Eq.(17) and integrate the resulting expression with respect to 

Rcrk between some arbitrary crack radius Rcrk1 and the critical crack radius Rcrk2 to 

ascertain the number of loading cycles ∆N remaining from the appearance of a crack 

of radius Rcrk1 to fracture.  We obtain 

 

    ΔN =
1

A BΔσ( )n Rcrk
−n / 2

Rcrk1

Rcrk 2

∫ dRcrk    

           (19) 

   =
2

n − 2( )A BΔσ( )n
1

Rcrk1
n / 2( )−1 −

Bσmax
K1c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
n−2⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
. 

 

The critical crack radius is defined as that radius such that further loading leads to 

catastrophic failure.  The last term in brackets in Eq.(19) is thus obtained by setting the 
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critical crack radius Rcrk2 = (K1c/Bσmax)2 where K1c is the fracture toughness of the 

material (Hertzberg 1989).   

Let Ntotal equal the total number of loading cycles from the virgin state to 

fracture.  The fraction of fatigue life remaining for the material occurring after the 

appearance of a crack of radius Rcrk1 is ∆N/Ntotal.  The crack of radius Rcrk1 thus occurs 

at the fraction f = [1 – (∆N/Ntotal)] of total fatigue life of the material measured from 

the virgin state.  Setting Rcrk1 = Rcrk in the last equality in Eq.(19), solving for Rcrk and 

substituting the resulting expression in Eq.(16), we obtain that the crack growth 

contribution βcrk to the total nonlinearity parameter β as a function of the fraction of 

total fatigue life f is given as 

 

     βcrk =
5.3x106Ccrk

a1
n−2 + a2 1− f( )[ ]8 n−2( ) 1+

0.25Ccrk

a1
n−2 + a2 1− f( )[ ]6 n−2( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

−2

   (20) 

 

where 

     a1 =
Bσmax

K1c
     (21) 

and 

     a2 =
n − 2( )

2
Ntotal A BΔσ( )n  .   (22) 

 

It is emphasized that Eq.(20) is applicable in the Paris law regime where Rcrk is of the 

order 250μm or larger.  Such crack lengths generally occur in the final 10-20 percent 
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of fatigue life for high cycle fatigue.  Cracks having a radius smaller than 250μm are 

seen directly from Eq.(16) to make a negligible contribution to βcrk for typical values 

of Ccrk [of order 107m-3 (Nazarov and Sutin 1963)].  

   

5. DEPENDENCE OF NONLINEARITY PARAMETERS OF NICKEL AND 

AA2024-T4 ON STATE OF FATIGUE 

We consider the application of the above model to the calculation of the 

nonlinearity parameters of polycrystalline nickel and AA2024-T4 as a function of 

percent full fatigue life to fracture.  Grobstein et al. (1991) published an extensive 

study of substructural evolution in fatigued polycrystalline nickel, a wavy slip metal, 

cyclically stressed from the virgin state to fracture using various specimens subjected 

to a variety of loading conditions.  Their data include volume fractions of dislocation 

substructures (veins and PSBs) and dislocation densities within the substructures 

formed as a function of percent full life. We apply their data in Section 5.1 to the 

calculations of the nonlinearity parameters of polycrystalline nickel for specimens 

fatigued in fully reversed, stress-controlled loading conditions at 241MPa and at 

345MPa. 

Correspondingly detailed substructural evolution data are not available for 

aluminium alloy 2024-T4. The relationship between the microstructure and cyclic 

plastic-deformation behavior is generally more complex for high strength commercial 

alloys than that of pure metals.  It is generally known, for example, that the PSBs in 

such alloys are thinner and carry a much larger plastic strain than pure metals (Christ 

1996).  Despite the more complex nature of the dislocation substructures for AA2024-
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T4, it is important to emphasize that the basic building blocks of the substructures 

remain dislocation monopoles and dislocation dipoles.  It is these basic building blocks 

that determine the magnitude of the nonlinearity parameters.  In this view we naively 

assume that since AA2024-T4 is also a wavy slip metal, the nonlinearity parameters of 

the alloy may be obtained from the substructural evolution data of nickel Grobstein et 

al. (1991) and the elastic constants, Poisson ratio, and Burgers vector for AA2024-T4.  

We apply the above analytical model in Section 5.2 to the calculation of β for 

AA2024-T4 as a function of percent full life to fracture for specimens cyclically 

loaded in uniaxial, stress-control at 276MPa from zero to full load.  The results are 

compared to experimental data previously reported for AA2024-T4 (Cantrell and Yost 

2001).          

 

5.1. Polycrystalline nickel 

5.1.1. Stress-controlled loading at 241MPa 

 For stress-controlled cyclic loading at 241MPa we use the dislocation 

substructure-related parameters previously ascertained by Cantrell (2004) for 

polycrystalline nickel from the data of Grobstein et al. (1991) and the published works 

of Winter (1974), Antonopoulos and Winter (1976), Antonopoulos, Brown and Winter 

(1976), Brown (1981), Wang and Mughrabi (1984) and Wang et al. (1984).  The vein 

structure attains a volume fraction fvein = 0.35 at 10 percent full life and remains at that 

volume fraction to fracture.  PSBs begin to form at ~ 0.1 percent full life and 

monotonically grow with decreasing slope to a volume fraction fPSB = 0.158 at full life.  

The dislocation density in the PSB walls Λmp
PSBw = 1.7 x 1015 m-2, the dislocation 
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density in the vein structure Λmp
vein = 8.5 x 1014 m-2, the shear modulus G = 73.2 GPa, 

the longitudinal modulus Ae
2 = 278 GPa, the Poisson ratio ν = 0.39, the magnitude of 

the Burgers vector b = 0.249 nm, and the dislocation half-loop length L = 8.2 x 10-8 m. 

The dipole density in the vein structure Λdp
vein = 4.25 x 1014 m-2, the dipole density in 

the wall structure Λdp
PSBw = 8.5 x 1014 m-2, the dipole height in the vein structure hvein 

= 7.6nm, and the dipole height in the PSBs hPSB = 5.4nm.  For polycrystalline solids 

we assume Ω ≈ R ≈ 1/3. 

 The vein structure is characterized by short-range stresses resulting from the 

relaxation of the dislocation substructure into its equilibrium arrangement.  The 

dislocation monopole contribution to the nonlinearity parameter from the vein 

structure βvein
mp  is obtained from Eq.(6).  Mughrabi (1981) estimated that the internal 

(initial) shear stress τ experienced by a given dislocation in the vein structure in copper 

is roughly 20 percent of the saturation shear stress (28MPa for copper).  According to 

the model of Brown (2000), the edge dislocation line tension is closer to 0.23nN rather 

than the value 1.0nN estimated by Mugrhabi.  Thus, from Brown’s model we estimate 

that the internal stress in the vein structure is of the order 4.6 percent of the saturation 

stress.  For copper this means an internal shear stress τvein,Cu of 1.28MPa.  Mughrabi, 

Ackermann and Herz (1978) have shown that the saturation stress scales as the 

magnitude of the shear modulus of the material.  Thus, the internal shear stress of 

nickel τvein,Ni is calculated as τvein,Ni = (GNi/GCu)τvein,Cu, where GNi is the shear modulus 

of nickel and GCu is the shear modulus of copper  Since GNi = 73.2GPa and GCu = 

42.0GPa, we obtain τvein,Ni = 2.23MPa.  The effective longitudinal stress |σ0| that 

appears in Eq.(6) is calculated as |σ0| = |τ|/R = 6.69MPa for polycrystalline nickel.  
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From Eq.(6), the dislocation monopole contribution to the nonlinearity parameter from 

the vein structure is calculated to be βvein
mp  = 48.4.   The gamma factor for dislocation 

monopoles in the vein structure is calculated from Eq.(12) to be Γmp
vein = 1.61. 

The calculation of the contribution to the nonlinearity parameter from 

dislocation dipoles in the vein structure is obtained by substituting the material 

constants and dislocation-related parameters given above into Eq.(10).   We obtain 

β vein
dp =  23.5 for the value of the dipole contribution associated with the vein 

structure. The gamma factor for dislocation dipoles in the vein structure is calculated 

from Eq.(13) to be Γdp
vein = 0.08. 

The dipole contribution to the nonlinearity parameter associated with the PSB 

wall (ladder) structure is also obtained from Eq.(10) using the same values of the 

nickel material parameters as that for the vein structure except that for PSB walls the 

dislocation density Λdp
PSBw = 8.5 x 1014 m-2 and the dipole height hPSB = 5.4 nm.  

Using these values, we obtain the PSB wall dipole contribution to be β PSBw
dp =  16.9.  

The gamma factor for dislocation dipoles in the PSB wall structure is calculated from 

Eq.(13) to be Γdp
PSBw = 0.08. 

 A substantial contribution to the nonlinearity parameter is also obtained from 

the action of initial (internal) stresses on dislocations generated on secondary slip 

systems as the PSBs mature.  According to Brown and Ogin (1981), the internal 

tensile stress σPSB generated in the PSBs is given as 

 

          σPSB ≈
5.7

2π 1−ν( )
Get     (23) 



 

 

 

19

where 

     et ≈ φ −θ( )εpl      (24) 

 

and (φ-θ) is the misorientation of the PSB walls with respect to the matrix.  Assuming 

a misorientation of 5 degrees (Brown and Ogin 1981) and a typical maximum plastic 

strain εpl for pure metals of roughly 7.5 x 10-3, we obtain from Eqs.(23) and (24) that 

 

       σPSB = 5.938x10−4 G
1−ν( )

 .   (25) 

 

The tensile stress σPSB is orientated roughly along the direction of the Burgers vector.  

The resolved shear stress τsecond along the secondary slip direction is thus given by 

τsecond = R´σPSB where R´ ≈ 0.41.  The longitudinal stress σ0 given in Eq.(6) is related 

to τsecond and to σPSB as σ0 = τsecond/R = (R´/R) σPSB = 1.23σPSB.  For polycrystalline 

nickel we thus calculate that |σ0| = 87.5MPa.   

Finally, according to Brown (1981) the tensile stresses that develop along the 

slip direction in the PSBs do not interact with the dislocations in the primary slip 

plane.  Rather, they interact with secondary dislocations.  Transmission electron 

micrographs obtained by Wang and Mughrabi (1984) and Wang et al. (1984) suggest 

that the density of secondary dislocations approaches that of the PSB wall structure (~ 

2 x 1015 m-2) as mature wall structures transform into misoriented cells during 

secondary hardening.  We assume here a secondary dislocation density of 1.0 x 1015 

m-2.  Using these values together with the values of the elastic constants, half-loop 
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length, Burgers vector, R, and Ω used in the preceding calculations, we calculate from 

Eq.(6) the contribution to the nonlinearity parameter from PSB stresses to be 

β PSBσ
mp =  745.3. The gamma factor for dislocation monopoles associated with 

secondary dislocations is calculated from Eq.(3.70) to be Γmp
PSBσ = 1.89. 

 

5.1.2. Stress-controlled loading at 345MPa 

For stress-controlled cyclic loading conditions at 345MPa we use the same 

dislocation substructure-related parameters given above for 241MPa except that for 

345MPa the fatigue parameters fvein = 0.44, fPSB = 0.224, Λmp
PSBw = 2.1 x 1015 m-2, 

Λmp
vein = 1.05 x 1015 m-2, Λdp

vein = 5.25 x 1014 m-2, and Λdp
PSBw = 1.05 x 1015 m-2.  

Using these parameters, we calculate βvein
mp  = 59.8, Γmp

vein = 1.99, β vein
dp =  29.05, 

Γdp
vein = 0.098, β PSBw

dp =  20.8, and Γdp
PSBw = 0.099. 

 

5.1.3. Polycrystalline nickel nonlinearity parameter versus percent fatigue life 

 The total nonlinearity parameters β for polycrystalline nickel resulting from 

substructural evolution are calculated by substituting the substructural contributions to 

the nonlinearity parameters and gamma factors obtained in Sections 5.1.1 and 5.1.2 

into Eq.(15). The contribution to β from crack growth is obtained from Eqs.(20)-(22). 

For polycrystalline nickel we assume n ≈ 3.0, B = 1.13 (penny-shaped cracks), and K1c 

≈ 62MPa√m (Mirshams et al. 2001).   From the data of Grobstein et al. (1991) for 

uniaxial, fully reversed, stress-controlled loading at 154MPa, we obtain A ≈ 8.6 x 10-10 
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MPa-3m-0.5cycle-1 assuming from the data that ∆N ≈ 3.3 x 10 3 cycles, Ntotal ≈ 2.23 x 

104 cycles, and Ccrk ≈ 107m-3 (Nazarov and Sutin 1963).  

 The total nonlinearity parameters β for pure polycrystalline nickel are plotted 

in Fig.1 as a function of percent fatigue life from the virgin state to fracture for stress-

controlled loading at 241MPa and for stress-controlled loading at 345MPa. The 

substructural contribution to β in the plots are obtained by substituting into Eq.(15) the 

substructural evolution data of Grobstein et al. (1991) and the above-calculated values 

of the nonlinearity parameters and gamma factors.  The contributions from crack 

growth are calculated from Eqs.(20)-(22) and the above-calculated Paris law 

parameters using the data of Grobstein et al. (1991) for stress-controlled loading at 

154MPa.  It is assumed that the results, when expressed in terms of percent total life, 

may be applied in good approximation to the cases of stress-controlled loading at 

241MPa and 345MPa when the latter results are also expressed in terms of percent 

total life.  The contribution from the elastic nonlinearity βe is estimated from elastic 

constant data to be approximately 5.0 (Cantrell 2004).   

It is evident from Fig.1 that despite significant variations in the loading stresses 

and volume fractions of veins and PSBs for the two cases, the model predicts quite 

similar variations of the nonlinearity parameters.  Both curves show monotonically 

increasing values of β of roughly 300 percent over the fatigue life from substructural 

evolution alone.   The values of the nonlinearity parameters for the two loading 

conditions agree to within three percent from approximately 0.01 percent total life to 

fracture.  The larger difference in β values below 0.01 percent results directly from the 

difference in the number of fatigue cycles to fracture for the two loads.  A measurable 
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contribution from crack growth begins roughly at 85 percent of total fatigue life and 

rapidly becomes the dominant contribution to β as the crack increases in size to 

fracture.      

 

5.2. Aluminium alloy 2024-T4 

Detailed substructural evolutionary data comparable to that obtained by 

Grobstein et al. (1991) for polycrystalline nickel are not available for aluminium alloy 

2024-T4 (AA2024-T4).  However, since AA2024-T4 is a wavy slip metal, the 

substructural evolution of AA2024-T4 may be expected to follow a pattern somewhat 

similar to that of polycrystalline nickel, although the exact details of the substructural 

organization (e.g., dimensions, volume fractions, morphology, etc.) differ due to 

precipitation and alloying (Christ 1996).  It is important to recognize in the present 

model that the more important consideration for model calculations is the dependence 

of the total nonlinearity parameter directly on the dislocation monopoles and dipoles 

as basic building blocks for the more complex fatigue-induced substructures.  The 

model may thus be regarded as somewhat generic in character.  In this view we 

assume that the substructural contributions to the total nonlinearity parameter as a 

function of percent full fatigue life may be estimated from Eq.(15) using the 

substructural evolution data of Grobstein et al. (1991) and from Eqs.(6), (10), (12), 

(13), and (25) using the material constants for AA2024-T4.   For AA2024-T4 the 

appropriate material constants are G ≈ 28.6GPa, A2
e ≈ 109GPa, ν = 0.33, and b ≈ 

0.286nm.  The values of the half-loop length and dipole heights are assumed to be the 

same as that used for nickel.    
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We thus obtain for AA2024-T4 that βmatrix
mp  = 37.0, Γmp

matrix = 1.61, βmatrix
dp = 

24.9, Γdp
matrix = 0.09, β PSBw

dp =  17.9, Γdp
PSBw = 0.09. β PSBσ

mp =  518.0, and Γmp
PSBσ = 

1.90.  It is noted that for AA2024-T4 the “vein” structure is less well defined than for 

pure metals and is designated here as a “matrix” structure in recognition of the 

morphological difference.  The relevant β and Γ parameters, however, are calculated 

formally from the monopole and dipole building blocks in the same manner as for 

well-defined vein structures.   The contribution to β from crack growth is obtained 

from Eqs.(20)-(22) by assuming n ≈ 3.0 (Weertman 1979), B = 1.13, and K1c ≈ 

30MPa√m (Bucci and Stark, 1996).  The parameter A is calculated directly from 

Eq.(17) and the data tabulated by Weertman (1979) to be approximately 3.8 x 10-11 

MPa-3m-0.5cycle-1.  The elastic nonlinearity parameter βe is determined experimentally 

to be roughly 4.9 (Cantrell and Yost 1994) and Ntotal ≈ 3.0 x 105 cycles.   

The total nonlinearity parameter β of aluminium alloy 2024-T4 for specimens 

cyclically loaded in uniaxial, stress-control at 276MPa from zero to full load is plotted 

in Fig.2 as a function of percent fatigue life from the virgin state to fracture.  The 

contribution from substructural evolution is calculated from the data of Grobstein et al. 

(1991) for stress-controlled loading of polycrystalline nickel at 241MPa and from 

Eqs.(6), (10), (12), (13), and (25) using the material constants for AA2024-T4. The 

contributions from crack growth are calculated from Eqs.(20)-(22) and the above-

calculated Paris law parameters for AA2024-T4.  The contributions to β calculated for 

the matrix substructure (broken line), the PSBs (solid line), and crack growth (dotted 

line) are indicated.  Also shown in the graph are experimental data points obtained 

from acoustic harmonic generation measurements previously reported (Cantrell and 
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Yost 2001) of ASTM standard ‘dogbone’ specimens of AA2024-T4 fatigued at a rate 

of 10Hz under uniaxial, stress-controlled cyclic loading at 276MPa from zero to full 

load.  It is important to point out that large variations in the measured values of β 

occur in the AA2024-T4 experimental data that for a given value of percent life are 

dependent on the volume of the sample over which the measurements are obtained.  

Such variations indicate that the fatigue damage is highly localized and that 

measurements away from the damage site produce smaller values of β.  The values 

shown in Fig.2 are the maximum values of β obtained for the given values of percent 

life for which measurements over multiple regions of the specimen gauge section are 

made.     

The agreement between the theoretical curve and the experimental data in Fig.2 

is excellent, despite leaning heavily on the substructural evolution data for 

polycrystalline nickel.  Such agreement lends support to the notion that the analytical 

model may indeed be somewhat generic and thus applicable to wavy slip metals in 

general with appropriate accounting for different material constants and loading 

conditions.  Such an assumption must be tempered with caution, however, since many 

of the microstructural input parameters used in the model calculations for both nickel 

and AA2024-T4 are based on educated estimates from other wavy slip metals that are, 

as yet, experimentally unconfirmed for the present materials.  Further, the 

experimental measurements of AA2024-T4 are obtained from acoustic harmonic 

generation data that may involve wave propagation volumes (wave-front cross-

sectional area times propagation distance) larger than that of material containing 

relevant fatigue substructures.  Hence, the values of the nonlinearity parameter 
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measured in such cases would be smaller than the true value.  Indeed, as previously 

reported (Cantrell and Yost 2004) the large variation in the magnitude of the measured 

nonlinearity parameter from one region to another in the AA2024-T4 specimens 

suggests that the fatigue damage is highly localized, making the volume of wave 

interaction an important measurement consideration.   

Notwithstanding such uncertainties, the present analytical model predicts and 

the experimental data confirm that the magnitude of the nonlinearity parameters of 

AA2024-T4 increase monotonically from the virgin state to fracture as the result of 

stress-controlled cyclic loading at 276MPa.  The contribution from substructural 

evolution alone produces an increase of more than 250 percent.  A measurable 

contribution from crack growth begins roughly at 80 percent of total fatigue life and 

rapidly becomes the dominant contribution to β as the crack increases in size to 

fracture.  

 

6. CONCLUSION 

The model presented here of the dependence of the material (acoustic) 

nonlinearity parameter on the fraction (percent) of total fatigue life is based on well-

documented microstructural features formed in wavy slip, pure metals subjected to 

cyclic loading and on the growth of fatigue cracks in the Paris law regime.  The model 

interaction of a stress perturbation (e.g., an acoustic wave) with vein structures and 

persistent slip bands at a given state of fatigue is based on the accumulated 

nonlinearities of dislocation monopoles and dipoles that serve as building blocks for 

the substructures.  The calculated values of the nonlinearity parameters for 
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polycrystalline nickel above 0.01 percent full life for cyclic loads at 241MPa and 

345MPa agree to within three percent.  The close agreement for such disparate loads 

suggests that the manner in which the dislocation substructures evolve during fatigue 

may influence the value of β at a given fatigue state more than the specific values of 

the dislocation densities and volume fractions of the substructures involved.  This 

implies that the model may also be applicable to other materials by accounting 

appropriately for differences in the fundamental material parameters such as the elastic 

moduli and Burgers vector, providing that the substructural evolution occurs in a 

manner that is organizationally and temporally (in terms of percent full life) similar to 

that of polycrystalline nickel.  The successful application of the model to AA2024-T4 

using the evolutionary data of polycrystalline nickel appears to substantiate this view.         

The effects of crack growth on the nonlinearity parameters are dependent on 

well-known fracture mechanics concepts and material parameters that are documented 

for a wide range of materials.  The present model predicts that crack dimensions 

smaller than that of the Paris law regime (less than a radius of ~250μm) make 

negligible contributions to the nonlinearity parameter, but cracks in the Paris law 

regime make significant (even dominant) contributions during the last 10-20 percent of 

fatigue life.  Tong and Bailon (1995) have shown that the plastic zone around the 

crack tip generates dislocation substructures corresponding to those found in single 

crystal material cyclically loaded in plastic strain control.  Particular substructures 

occur in well-defined regions in the plastic zone in accordance with the magnitude of 

the plastic strain experienced by the material in that region.  Hence, cell structures, 

labyrinths, PSBs, veins, and dislocation tangles, respectively, dominate distinct 
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regions in the plastic zone as a function of distance from the crack tip.  The regions 

increase in size in accordance with the increase of the plastic zone as the crack length 

increases during fatigue.   

In contrast to pure metals many alloys such as AA2024-T4 commonly contain 

numerous inclusions and voids (“dirty” material) having proximate cracks.  The cracks 

serve as stress raisers that under cyclic loading produce localized regions of damage, 

not only from the cracks themselves but also from the dislocation substructures 

generated in the plastic zone around the crack tip.  It is surmised that such localized 

damage would produce monotonically increasing values of the nonlinearity parameter 

as a function of decreasing distance from the crack tip.  The agreement in Fig. 2 

between the maximum measured values of the nonlinearity parameters and the 

theoretical curve of AA2024-T4 for a given percent full life may thus be the result of 

the dislocation substructures generated in the plastic zone during crack growth.  

Indeed, a corresponding substructural evolution would occur even without the 

presence of pre-fatigue cracks, but it is expected that the evolved substructures would 

be more globally and uniformly distributed.  From a consideration of Fig. 1 for a pure 

metal and Fig. 2 for a dirty metal it appears that in terms of percent full life expended 

it makes little difference that the damage is local or global.  Near fracture the fatal 

damage is always local.  

The generic character of the model interactions and the relative insensitivity to 

loading conditions as indicated in Fig.1 suggest that the present results may apply at 

least in principle to all wavy slip metals subjected to similar loading conditions, 

providing appropriate consideration is given to differences in the material constants 
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and to modifications in the substructure evolutionary process due, for example, to 

alloying or heat treatment.  The excellent agreement between the theoretical curve and 

the experimental data for AA2024-T4 lends support to this notion despite the 

aforementioned uncertainties in the values of several microstructural input parameters 

used in the model and in the measured nonlinearity parameters resulting from acoustic 

wave interaction volumes.  The present model represents a significant advance in our 

understanding of the nonlinear interaction of sound waves with fatigue substructures, 

but further work in experiment and modelling is required.  A more comprehensive 

understanding of wave-microstructure interactions and the assessment of model 

parameters resulting from such interactions at the most fundamental level must be 

acquired to gain confidence in model predictions and reliability, as well as to establish 

the limitations of model and testing applications.  Such an understanding is presently 

being pursued through research with microscopically well-characterized single crystals 

and polycrystals of fatigued pure metals and metal alloys.             
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FIGURE CAPTIONS 

 

Fig. 1.  Graph of calculated material (acoustic) nonlinearity parameter plotted as a  

function of percent total fatigue life for polycrystalline nickel cyclically loaded  

in stress control at 345MPa (mostly upper curve) and at 241MPa (mostly lower 

curve). 

 

Fig. 2.  Graph of material (acoustic) nonlinearity parameter plotted as a function of  

percent total fatigue life for aluminium alloy 2024-T4.  The continuous curve is 

calculated from the analytical model.  The filled circles with error bars are 

experimental data points obtained from acoustic harmonic generation 

measurements (Cantrell and Yost 2001).   
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         Figure 1. Cantrell 
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       Figure 2. Cantrell 


